Skip to content

Configuration Overview

DeepSearcher provides flexible configuration options for all its components. You can customize the following aspects of the system:

📋 Components

Component Purpose Documentation
LLM Large Language Models for query processing LLM Configuration
Embedding Models Text embedding for vector retrieval Embedding Models
Vector Database Storage and retrieval of vector embeddings Vector Database
File Loader Loading and processing various file formats File Loader
Web Crawler Gathering information from web sources Web Crawler

🔄 Configuration Method

DeepSearcher uses a consistent configuration approach for all components:

from deepsearcher.configuration import Configuration, init_config

# Create configuration
config = Configuration()

# Set provider configurations
config.set_provider_config("[component]", "[provider]", {"option": "value"})

# Initialize with configuration
init_config(config=config)

For detailed configuration options for each component, please visit the corresponding documentation pages linked in the table above.