Vector Database Configuration
DeepSearcher uses vector databases to store and retrieve document embeddings for efficient semantic search.
📝 Basic Configuration
config.set_provider_config("vector_db", "(VectorDBName)", "(Arguments dict)")
Currently supported vector databases: - Milvus (including Milvus Lite and Zilliz Cloud)
🔍 Milvus Configuration
config.set_provider_config("vector_db", "Milvus", {"uri": "./milvus.db", "token": ""})
Deployment Options
Local Storage with Milvus Lite
Setting the uri
as a local file (e.g., ./milvus.db
) automatically utilizes Milvus Lite to store all data in this file. This is the most convenient method for development and smaller datasets.
config.set_provider_config("vector_db", "Milvus", {"uri": "./milvus.db", "token": ""})
Standalone Milvus Server
For larger datasets, you can set up a more performant Milvus server using Docker or Kubernetes. In this setup, use the server URI as your uri
parameter:
config.set_provider_config("vector_db", "Milvus", {"uri": "http://localhost:19530", "token": ""})
Zilliz Cloud (Managed Service)
Zilliz Cloud provides a fully managed cloud service for Milvus. To use Zilliz Cloud, adjust the uri
and token
according to the Public Endpoint and API Key:
config.set_provider_config("vector_db", "Milvus", {
"uri": "https://your-instance-id.api.gcp-us-west1.zillizcloud.com",
"token": "your_api_key"
})